Quantcast
Channel: GMAT Club Forum - Forums > Problem Solving (PS)
Viewing all articles
Browse latest Browse all 462833

Data Sufficiency (DS) | Re: If a and b are positive integers, is a^2 + b^2 divisible by 5?

$
0
0
Bunuel wrote:

If \(a\) and \(b\) are positive integers, is \(a^2 + b^2\) divisible by 5?


(1) \(2ab\) is divisible by 5

(2) \(a - b\) is divisible by 5


M19-11


Statement 1 : if\(a=5\) and\(b=1\) , then\(2ab\) is divisible by\(5\) but\(a^2+b^2\) is not, where as if\(a=b=5\) , then both\(2ab\) and\(a^2+b^2\) is divisible by\(5\) . HenceInsufficient

Statement 2 if\(a=b=5\) , then both\(a-b\) &\(a^2+b^2\) is divisible by\(5\) , but if\(a=6\) and\(b=1\) , then\(a-b\) is divisible by\(5\) but\(a^2+b^2\) is not. HenceInsufficient

Combining 1 & 2, we can write\( a^2+b^2=(a-b)^2+2ab\)
...

Viewing all articles
Browse latest Browse all 462833

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>