aashishagarwal2 wrote:
Bunuel wrote:
Official Solution:
The price of a house decreased by\(x\%\) from 1998 to 1999 and increased by\(y\%\) from 1999 to 2000. If the house cost\(M\) dollars in 2000, how much did it cost in 1998?
A. \(100 * \frac{\frac{M}{1 + x}}{1 - y}\)
B. \(\frac{\frac{M}{1 + \frac{x}{100}}}{1 - \frac{y}{100}}\)
C. \(\frac{M}{1 + \frac{x}{100} - \frac{y}{100}}\)
D. \(\frac{\frac{10,000M}{100 + y}}{100 - x}\)
E. \(\frac{\frac{10,000M}{100 + x}}{100 - y}\)
Denote\(P\) as
The price of a house decreased by\(x\%\) from 1998 to 1999 and increased by\(y\%\) from 1999 to 2000. If the house cost\(M\) dollars in 2000, how much did it cost in 1998?
A. \(100 * \frac{\frac{M}{1 + x}}{1 - y}\)
B. \(\frac{\frac{M}{1 + \frac{x}{100}}}{1 - \frac{y}{100}}\)
C. \(\frac{M}{1 + \frac{x}{100} - \frac{y}{100}}\)
D. \(\frac{\frac{10,000M}{100 + y}}{100 - x}\)
E. \(\frac{\frac{10,000M}{100 + x}}{100 - y}\)
Denote\(P\) as
...