niks18 wrote:
Bunuel wrote:
If x > 1, is positive integer b a factor of positive integer a?
(1) \(x^{(a + b)} = x^{(ab)}\)
(2) \(x^{(\frac{a}{b})} = x^{(\frac{a}{2})}\)
(1) \(x^{(a + b)} = x^{(ab)}\)
(2) \(x^{(\frac{a}{b})} = x^{(\frac{a}{2})}\)
The question stem implies that whether\(a=b*Integer\)
Statement 1 : this implies\(ab=a+b\) or\(ab-b=a\)
Hence\(a=b*(a-1)= b*Integer\) as\(a\) &\(b\) are integers, hence\(a\) is a multiple of\(b\) or\(b\) is a factor of\(a\) .Sufficient
Statement 2 implies\(\frac{a}{b}=\frac{a}{2}\) or\(b =2\) . But we cannot find the value of\(a\) . HenceInsufficient
OptionA
...